From Jammer to Gambler: Modeling and Detection of Jamming Attacks against Time-Critical Traffic

Zhuo Lu†, Wenye Wang†, and Cliff Wang‡

† Department of Electrical and Computer Engineering
North Carolina State University, Raleigh NC, US.

‡ Army Research Office
Research Triangle Park NC, US.

April 13, 2011
Outline

1 Motivation

2 Preliminaries
 - Modeling for Time-Critical Transmission
 - Modeling for Jamming Attacks
 - Performance Metric

3 Main Results
 - Analytical Modeling
 - Experimental Evaluation

4 JADE: Jamming Attack Detection based on Estimation

5 Conclusion
Outline

1 Motivation

2 Preliminaries

3 Main Results

4 JADE: Jamming Attack Detection based on Estimation

5 Conclusion
Emerging cyber-physical systems (notably the smart grid) have provided a new paradigm for wireless network design.

- Time-critical wireless networks.
Why Time-Critical?

Example: A substation protection scenario.

- IED: Intelligent electronic devices
- B needs to tell A: Do not break your circuit!
Jamming Issue in Time-Critical Networks

Example: A substation protection scenario.

- A jammer can severely disrupt time-critical communication.
Exiting Works and Issues

Existing results can not be readily adopted in time-critical networks.

- Jamming modeling and evaluation: packet delivery/transmission ratios (Xu’02), number of jammed packets (Li’07), network throughput (Bayraktaroglu’08).
Exiting Works and Issues

Existing results can not be readily adopted in time-critical networks.

- Jamming modeling and evaluation: packet delivery/transmission ratios (Xu’02), number of jammed packets (Li’07), network throughput (Bayraktaroglu’08).

100% packet delivery ratio ≠ Message can be delivered on time
Exiting Works and Issues

Existing results can not be readily adopted in time-critical networks.

- Jamming modeling and evaluation: packet delivery/transmission ratios (Xu’02), number of jammed packets (Li’07), network throughput (Bayraktaroglu’08).

- Jamming detection: requires the knowledge of the jamming impact to accurately identify significant attacks. (Xu’02, Wood’07)
Exiting Works and Issues

Existing results can not be readily adopted in time-critical networks.

- Jamming modeling and evaluation: packet delivery/transmission ratios (Xu’02), number of jammed packets (Li’07), network throughput (Bayraktaroglu’08).
- Jamming detection: requires the knowledge of the jamming impact to accurately identify significant attacks. (Xu’02, Wood’07)

With no understanding of jamming impact, it is hard to design efficient detection methods.
Exiting Works and Issues

Existing results can not be readily adopted in time-critical networks.

- Jamming modeling and evaluation: packet delivery/transmission ratios (Xu’02), number of jammed packets (Li’07), network throughput (Bayraktaroglu’08).
- Jamming detection: requires the knowledge of the jamming impact to accurately identify significant attacks. (Xu’02, Wood’07)

A fundamental question:

How to model and detect jamming attacks against time-critical traffic in wireless networks?
Outline

1 Motivation

2 Preliminaries
 - Modeling for Time-Critical Transmission
 - Modeling for Jamming Attacks
 - Performance Metric

3 Main Results

4 JADE: Jamming Attack Detection based on Estimation

5 Conclusion
Requirements for Time-Critical Transmission

Time-critical messages require

- Highest priority,
- Low processing delay,
- No buffering and queuing.

IEC 61850 is a recent standard for power substation communication. GOOSE (Generic Object Oriented Substation Events) messages have 3ms and 10ms delay requirements for power device protection.

Simple retransmission mechanism: no any flow control.
Requirements for Time-Critical Transmission

Time-critical messages require

- Highest priority,
- Low processing delay,
- No buffering and queuing.

IEC 61850 is a recent standard for power substation communication.

- **GOOSE** (Generic Object Oriented Substation Events) messages have 3ms and 10ms delay requirements for power device protection.
 - Simple retransmission mechanism: no any flow control.

![Diagram showing the layers of a communication stack with a time-critical message at the Application layer.]
Modeling for time-critical transmission.

- A direct map from the application layer to MAC layer.
- Retransmission of a failed packet until the deadline.
Various jamming models available in the literature (Xu'02, Bayraktaroglu'08)

- Random jamming
- Periodic jamming
- Reactive jamming
Models for Jamming Attacks

Various jamming models available in the literature (Xu'02, Bayraktaroglu'08)

- Random jamming
- Periodic jamming
- Reactive jamming with probability p

In this paper, we consider reactive jamming as it is the primary focus in existing work.
The goal of time-critical network is to deliver time-critical messages with specific delay thresholds.
The goal of time-critical network is to deliver time-critical messages with specific delay thresholds.

The metric should

1. be message-oriented.
2. directly reflect the delay constraints.
The goal of time-critical network is to deliver time-critical messages with specific delay thresholds.

Message Invalidation Ratio

For a time-critical message with delay constraint σ, the message invalidation ratio is defined as

$$r = \mathbb{P}\{D > \sigma\},$$

where D is the end-to-end application-layer delay of the message.
Outline

1. Motivation
2. Preliminaries
3. Main Results
 - Analytical Modeling
 - Experimental Evaluation
4. JADE: Jamming Attack Detection based on Estimation
5. Conclusion
The end-to-end application delay:

\[D = \sum_{i=0}^{N} d_i, \]

where \(d_i \) is the i.i.d. delay for \(i \)-th retransmission at the MAC layer, and \(N \) is the number of retransmissions.

The message invalidation ratio: \(r = \mathbb{P}(D > \sigma) \).
Assumption: A dumb transmitter always re-sends a transmission-failed packet until it is successfully delivered to the receiver.

- The number of retransmissions N can go to infinity.
- Enables asymptotic analysis. (Malone’07, Bayraktaroglu’08)
Assumption: Dumb Transmitter

Assumption: A dumb transmitter always re-sends a transmission-failed packet until it is successfully delivered to the receiver.

- The number of retransmissions N can go to infinity.
 - enables asymptotic analysis. (Malone’07, Bayraktaroglu’08)

Practical challenge: A message is retransmitted until the deadline.

- N is an upper-bounded random variable dynamically coupled with the cumulative delay in history.
- Mathematically, N is a stopping time. (need non-asymptotic tools!)
Martingale Theory

An effective tool to solve *stopping time related* mathematical problems.

- Part of the motivation is to formulate some problems in gambling.

Gambler’s ruin

In each play, he wins (or, loses) 1 dollar with probability p (or, $1-p$).

<table>
<thead>
<tr>
<th>Initial fortune</th>
<th>Win the goal</th>
<th>Bankruptcy</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 dollars</td>
<td>0 dollar</td>
<td>50 dollars</td>
</tr>
</tbody>
</table>
Martingale Theory

An effective tool to solve stopping time related mathematical problems.

- Part of the motivation is to formulate some problems in gambling.

Gambler’s ruin

In each play, he wins (or, loses) 1 dollar with probability p (or, $1 - p$).

What is the probability that the gambler can win the game?

If the jamming process can be mapped to a similar gambling game, we are done.

100 dollars 0 dollar 50 dollars

Initial fortune Win the goal Bankruptcy
Martingale Theory

An effective tool to solve stopping time related mathematical problems.

- Part of the motivation is to formulate some problems in gambling.

Gambler’s ruin

In each play, he wins (or, loses) 1 dollar with probability p (or, $1 - p$).

What is the probability that the gambler can win the game?

If the jamming process can be mapped to a similar gambling game, we are done.
From Jammer to Gambler

The Jammer is a gambler

- Delay \Rightarrow money
- Delay threshold \Rightarrow gambler’s winning goal.

Message invalidation: the jammer keeps jamming each transmission of a message such that the cumulative delay is larger than the delay threshold.

The gambler wins: the gambler keeps winning each play such that the cumulative money is larger than his goal.
Analytical Results Based on Martingale Theory

Theorem (Message invalidation ratio for general cases)

Given a jamming strategy \(J(p) \), the message invalidation ratio \(r \) is

\[
r = \frac{\mathbb{E}(D_s) - \frac{c}{1-p_a}}{\mathbb{E}(D_s) - \frac{p_a c}{1-p_a} - \mathbb{E}(D_u)},
\]

where \(p_a = p^{N_{mac}} \), \(N_{mac} \) is the retry number at MAC layer, \(c = \mathbb{E}(d_i) \) is the mean of the i.i.d. MAC-layer delay \(d_i \), \(D_s \leq \sigma \) is the end-to-end delay of a successfully delivered message, and \(D_u > \sigma \) is the delay of failed message delivery.

Theorem (General upper bound)

For the message invalidation ratio \(r \) in Theorem 1, it satisfies that

\[
r \leq \frac{p^{N_{mac}} c}{(1 - p^{N_{mac}})(\sigma - c) + p^{N_{mac}} c}.
\]
Indication of Analytical Results

Phase transition for message invalidation ratio:

- **Slightly-increasing** phase: increases negligibly with the increasing of the jamming probability p.
- **Dramatically-increasing** phase: increases dramatically (and linearly) with the increasing of the jamming probability p.
Experimental Evaluation: Setups

Setups:
- Network: a WiFi-based substation network. (WiFi Alliance’09, Kanabar’09, Akyol’10)
- Jammer: USRP with RNU Radio.
- Time-critical messages: 4 GOOSE applications.

- **200ms** for anti-islanding (Kanabar’09).
- **16ms** for transfer trip protection (Kanabar’09).
- **10ms** defined in IEC 61850 (Type1/P2).
- **3ms** defined in IEC 61850 (Type1/P1).
Experimental Results: Message Invalidation Ratio

GOOSE messaging between a transmit-receive pair under jamming.

- Type1/P1 (3ms)
- Type1/P2 (10ms)
- Transfer Trip Protection (16ms)
- Anti-islanding (200ms)
Outline

1 Motivation

2 Preliminaries

3 Main Results

4 JADE: Jamming Attack Detection based on Estimation

5 Conclusion
Transmit a number of packets.

2. Estimate the jamming probability \hat{p} based on transmission results (e.g. no ACK)

3. if $\hat{p} > p^*$, jamming exists. The threshold p^* is chosen smaller than the transition point: $p^* = 0.3$.
Jammer: time-varying with jamming probability p uniformly distributed on $[0.4, 0.9]$.

Benchmark: the Likelihood Ratio (LLR) Test (Li’07) is the theoretically optimal detector for deterministic models.
Experimental Results of JADE

Jammer: time-varying with jamming probability p uniformly distributed on $[0.4, 0.9]$.

Benchmark: the Likelihood Ratio (LLR) Test (Li’07) is the theoretically optimal detector for deterministic models.

<table>
<thead>
<tr>
<th>Number of Samples:</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection Time:</td>
<td>54ms</td>
<td>109ms</td>
<td>163ms</td>
<td>218ms</td>
</tr>
<tr>
<td>JADE:</td>
<td>98.6%</td>
<td>99.1%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>LLR Test:</td>
<td>91.3%</td>
<td>92.1%</td>
<td>92.5%</td>
<td>91.6%</td>
</tr>
</tbody>
</table>
Experimental Results of JADE

Jammer: time-varying with jamming probability p uniformly distributed on $[0.4, 0.9]$.

Benchmark: the Likelihood Ratio (LLR) Test (Li’07) is the theoretically optimal detector for deterministic models.

| Table: Detection Ratios of both JADE and LLR Test |
|---|--------|--------|--------|--------|
| Number of Samples: | 50 | 100 | 150 | 200 |
| Detection Time: | 54ms | 109ms | 163ms | 218ms |
| JADE: | 98.6% | 99.1% | 100% | 100% |
| LLR Test : | 91.3% | 92.1% | 92.5% | 91.6% |

- The LLR Test has a **model mismatching problem** in dealing with a practical time-vary jammer.
Outline

1 Motivation
2 Preliminaries
3 Main Results
4 JADE: Jamming Attack Detection based on Estimation
5 Conclusion
1 Motivated by emerging time-critical wireless applications, we introduce the message invalidation ratio to quantify the impact of jamming attacks against time-critical traffic.
 - Theoretical results: Gambling based modeling.
 - Experimental results: GOOSE messaging in IEC 61850.
2 We show a phase transition phenomenon for the message invalidation ratio.
 - Slightly-increasing phase.
 - Dynamically-increasing phase.
3 We developed a JADE system to achieve simple, efficient and robust jamming detection for power substation networks.
Thank you!