Friendships in the Air: Integrating Social Links into Wireless Network Modeling, Routing, and Analysis

Zhuo Lu
University of Memphis

Yalin E. Sagduyu and Yi Shi
Intelligent Automation Inc.
Outline

• Motivation
 - Exploratory research on combining social and wireless communication links

• Assumptions and Modeling
 - Greedy routing
 - Success delivery probability and delay

• Small-scale experiments
 - Setups
 - Results

• Conclusion and limitations
Communication networks today

• Today’s infrastructure based network
 - Cellular network
 - Satellite network

• Peer-to-peer based network, ad-hoc network
 - WiFi
 - bluetooth
Social Networks vs Physical Networks

- Social link
 - Logical link, does not physically exit
- Today’s communication network provide a communication medium for social connections

Friends talking using phones
Social links overlaid over wireless networks

- On the upper layer, we can think data is delivered over social links.
A highly abstract model

• Combined social and wireless network
 - A hybrid network consisting of
 • Social links
 • Wireless links

• Both links can be used to deliver data
Potential Application

• Exploratory research
 - Combining social and communication networks
 - Analyzing information dissemination over joint network structures.

• Potential applications:
 - Emergency broadcasting
 - Optimized message delivery
Example: Emergency broadcasting

Social link

Peer-to-peer wireless link

When B can get the message?
How to send a message: example
Greedy Routing

- In all of social link and communication link neighbors, attempt to find the next-hop node in neighbors, whose distance to the destination is the shortest.
Coupling between social & comm. links

• We capture correlation between social and communication links in modeling, analysis and experiments.

Correlation probabilities (according to Octopus model)
Approximation

• **Distance discretization**
 - get iterative solutions of delivery success probability and delay
Emulation Testbed Setups

- SVT: Surrogate Virtual Transmitter
- SVR: Surrogate Virtual Receiver
Emulation Testbed Picture

- Router stations
- SVT
- SVR
- Ethernet Switch
- RFnest
Components

- **RouterStation Pro:**
 - WiFi, Ethernet interfaces
 - Running as a node

- **WiFi**
 - Wireless links

- **Ethernet**
 - Emulated social link controlled by social network server
RFnest: Multi-hop wireless channel emulator

Using RF cables connected to stations, RFnest accepts real RF signals and applies digitally controlled channel effects to RF signals.
Visualization
Experiments: Success Probability

Theoretical: $\beta_s = 90\%, \beta_c = 95\%$

Experimental: $\beta_s = 90\%, \beta_c = 95\%$

Theoretical: $\beta_s = 40\%, \beta_c = 30\%$

Experimental: $\beta_s = 40\%, \beta_c = 30\%$
Greedy Routing

- Greedy routing: always move a message closer to the destination.
- Longer distance \Rightarrow more likely to find a next-hop node with social link directly connected to the destination.
Experiments: Delivery Delay

- Theoretical: $\beta_s = 90\%, \beta_c = 95\%$
- Experimental: $\beta_s = 90\%, \beta_c = 95\%$
- Theoretical: $\beta_s = 40\%, \beta_c = 30\%$
- Experimental: $\beta_s = 40\%, \beta_c = 30\%$
Conclusions

• Investigated the design of combining the social and wireless network.

• Small-scale experiments
 - Success probability is always bounded from below, as distance goes to infinity.
 - Average delivery delay is always bounded from above, as distance goes to infinity.

• Limitations:
 - How this model should work in practice.
 - Knowledge in routing, mobility, ...