Objective:
Accuracy of a classifier is important in large-volume automated document categorization but subject to malicious human inputs. This paper aims to design a method to identify erroneous labeled data and alleviate the damage to classifiers caused by these malicious inputs.

Scenario:
• In active learning, samples are selected from unlabeled document set and passed to oracles
• An oracles labels samples and adds result to labeled document set as training set
• An SVM classifier is trained with the labeled documents
• An attacker provides falsified labels to misguide the training process.

Intuition:
• Attacker does not know the position of the separating plane.
• If a mislabeled sample is too far away from the separating plane, it’s more likely to be malicious.
• Find a risk factor r to judge how far a label could be to the hyperplane to remain legit.

Setup:
• Dataset: 1264 instances with 10233 extracted features from documents in Reuters-21578.
• SVM kernel: RBF with $\lambda = 1.0/1264$ and $C = 1.0$
• Erroneous labeling rate: 25%
• Defense settings: no attack, attack with defense, attack without defense

Future works:
• Attacker identification and prevention
• More scalable algorithms to find r